Bayesian analysis of mark-recapture data with travel time-dependent survival probabilities

نویسندگان

  • Saman MUTHUKUMARANA
  • Carl J. SCHWARZ
  • Tim B. SWARTZ
چکیده

The authors extend the classical Cormack–Jolly–Seber mark-recapture model to account for both temporal and spatial movement through a series of markers (e.g., dams). Survival rates are modeled as a function of (possibly) unobserved travel times. Because of the complex nature of the likelihood, they use a Bayesian approach based on the complete data likelihood, and integrate the posterior through Markov chain Monte Carlo methods. They test the model through simulations and apply it also to actual salmon data arising from the Columbia river system. The methodology was developed for use by the Pacific Ocean Shelf Tracking (POST) project. Analyse bayésienne de données de capture-recapture à l’aide de probabilités de survie dépendant du temps de déplacement Résumé : Les auteurs généralisent le modèle de capture-recapture classique de Cormack–Jolly–Seber pour tenir compte de déplacements spatiaux-temporels signalés par des marqueurs (tels que des barrages). Les taux de survie sont modélisés en fonction de temps de déplacement parfois inobservables. Vu la complexité de la vraisemblance, ils optent pour une approche bayésienne fondée sur la vraisemblance des données complètes et intègrent la loi a posteriori par des méthodes de Monte-Carlo à chaı̂ne de Markov. Ils testent le modèle par simulation et l’utilisent pour l’analyse de données sur les saumons du réseau hydrographique de la Columbia. La méthodologie a été développée aux fins du projet POST (Pacific Ocean Shelf Tracking).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining optimal population monitoring for rare butterflies.

Determining population viability of rare insects depends on precise, unbiased estimates of population size and other demographic parameters. We used data on the endangered St. Francis' satyr butterfly (Neonympha mitchellii francisci) to evaluate 2 approaches (mark-recapture and transect counts) for population analysis of rare butterflies. Mark-recapture analysis provided by far the greatest amo...

متن کامل

multimark: an R package for analysis of capture-recapture data consisting of multiple "noninvasive" marks.

I describe an open-source R package, multimark, for estimation of survival and abundance from capture-mark-recapture data consisting of multiple "noninvasive" marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histori...

متن کامل

Bayesian Capture-Recapture Analysis and Model Selection Allowing for Heterogeneity and Behavioral Effects

In this paper, we present Bayesian analysis of capture-recapture models for a closed population which allows for heterogeneity of capture probabilities between animals and bait/trap effects. We utilize a flexible discrete mixture model to account for the heterogeneity and behavioral effects. In addition we present a solid model selection criterion. Through illustrations with a real-world motiva...

متن کامل

Estimation of survival rates for wader populations: a review of mark-recapture methods

Wader life-history traits are comprised of low fecundity, delayed maturity and high annual survival. Robust estimates of annual survival are essential for effective conservation because population growth rates of longlived vertebrates are often sensitive to variation in survivorship. Estimation of survival rates from individually marked waders requires one of three types of data: live encounter...

متن کامل

A new approach to the "apparent survival" problem: estimating true survival rates from mark-recapture studies.

Survival estimates generated from live capture-mark-recapture studies may be negatively biased due to the permanent emigration of marked individuals from the study area. In the absence of a robust analytical solution, researchers typically sidestep this problem by simply reporting estimates using the term "apparent survival." Here, we present a hierarchical Bayesian multistate model designed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008